Filters for Semantic Service Composition in Service-oriented Multiagent Systems

Alberto Fernández
Universidad Rey Juan Carlos
Tulipán s/n, 28933
Móstoles (Madrid) - Spain
+34 91 488 7084
alberto.fernandez@urjc.es

Sascha Ossowski
Universidad Rey Juan Carlos
Tulipán s/n, 28933
Móstoles (Madrid) - Spain
+34 91 664 7485
sascha.ossowski@urjc.es

ABSTRACT
In Service-Oriented MAS middle-agents provide different kinds of matchmaking functionalities. If no adequate services are available for a specific request, a planning functionality can be used to build up composite services. In order to take advantage of recent advances in the field of AI planning for this purpose, we propose exploiting organisational information of Service-Oriented MAS to heuristically filter out those services that are probably irrelevant to the planning process. We present a novel framework for service-class based filtering and show how it can be instantiated to a particular MAS domain based on organisational information.

Categories and Subject Descriptors
I.2.m [Artificial Intelligence]: Miscellaneous

General Terms
Design.

Keywords
Semantic Web Services, Multiagent systems, Service composition.

1. INTRODUCTION
Services are computational entities that can be described, published, discovered, orchestrated and invoked by other software entities. When the management of services is realised by agents, the term service-oriented MAS has become popular [5]. Service-oriented architectures usually include directory services that service providers register with. A request for a service with desired characteristics often results in a matchmaking process based on the profiles stored in the directory. In service-oriented MAS, this functionality is typically offered by middle-agents. Even if no adequate services are found in this manner, it is still possible to build up composite services by purposefully combining several pre-existing services. The service composition planning problem has subtle differences with the classical AI planning problems, in particular as service composition plans need not be very deep but, in turn, can be built up from a vast number of services (operators) that are usually registered in the directory. This is particularly the case in open large-scale service-oriented MAS, where a pure AI planning approach can become impracticable.

In order to still take advantage of the recent advances in the field of AI planning, we suggest to reduce the set of input services that are passed on to an agent’s composition planning component. In Section 2 of this paper we present a framework to heuristically filter out those services that are probably irrelevant to the planning process. Section 3 sketches how such filters can exploit information about the organisational structure underlying a MAS. Section 4 briefly discusses how our service composition filters are used in the European IST project CASCOM [1].

2. GENERIC FILTERING FRAMEWORK
At a high level of abstraction, the service composition planning problem can be conceived as follows: let \(P = \{p_1, p_2, \ldots, p_n\}\) be the set of all possible plans (composite services) for a given service request \(R \), and \(D = \{s_1, s_2, \ldots, s_n\}\) the set of input services for the proper service composition planner (i.e. the directory available). The objective of a filter \(F \) is to select a given number \(I \) of services from \(D \) such that the search space is reduced, but the best plan of \(P \) can still be found.

The filter should make sure that the pruning of the search space for the planner is minimal. Put in another way: the bigger the subset of plans \(P \subset P \) that the planner can choose from, the bigger the probability that the plan of maximum quality is among them. A good heuristic to this respect is based on plan dimension and on the number of occurrences of services in plans: a service is supposed to be the more important, the bigger the number of plans from \(P \) that it is necessary for, and the shorter the plans from \(P \) that it is required for. We can approximate this information by storing and processing the plans historically created. So, in principle, we can build up matrices that store, for every possible query, the number of plans in which each service appeared, classified by each plan dimension.

However, it soon becomes apparent that the number of services and possible queries is too big to build up all matrices of the above type. Furthermore, the continuous repetition of a very same service request \(R \) is rather unlikely. Finally, such an approach would not be appropriate when a new service request (not planned before) is required (which, in fact, is quite usual). To overcome this drawback, we assume the availability of service class
information, so as to cluster services based on certain properties. If the number of classes is not too big, the aforementioned approach becomes feasible computationally.

Figure 1 depicts the structure of our approach to service composition filtering. With each outcome of a service composition request, a Historical Information Matrix \(H \) is updated. Setting out from this information, a Relevance Matrix \(v \) is revised and refined. Based on this matrix, service relevance can be determined in a straightforward manner. For each service composition request, the filtering method is based on this estimated service relevance function.

Where \(d \) is the dimension of the plan, \(m \) is the dimension of the longest plan stored, \(n_s \) is the number of times that \(s \) was part of a composite plan of dimension \(d \) for the request \(r \), and \(N_s \) is the total number of plans of dimension \(d \) for that request. \(c \) is a constant > 0 that allows giving more importance to plans of smaller dimension (a straightforward value is \(c=1 \)). Only dimensions with more than 0 plans are considered. With this calculus we obtain a relevance value between 0 and 1 for every given service class \(s \) with respect to the composition of a service of class \(r \).

The Relevance Matrix \(v(s,r) \) can be further refined in order to take transitivity into account. Consider the following situation: A plan that achieves \(C_1 \) is searched for, and that a potential solution is to compose the services \(C_2 \) and \(C_3 \) (\(C_2 \oplus C_3 \), for short). However, there is no service provider for \(C_3 \), but instead \(C_4 \) can be composed as \(C_4 \oplus C_3 \oplus C_2 \), so the final plan is \(C_2 \oplus C_4 \oplus C_3 \). Unfortunately, the value \(v(C_4,C_3) \) is low and the service providing \(C_4 \) is discarded and not taken into account in the planning process, so the aforementioned plan cannot be found by the planner. Therefore, we will refine the relevance matrix by taking transitivity into account, e.g. through the following update: \(v(C_2,C_1) = v(C_2,C_4)\cdot v(C_4,C_3) \). The same holds for third-level dependencies (e.g.: \(v(C_7,C_4) = v(C_7,C_5)\cdot v(C_5,C_6)\cdot v(C_6,C_4) \)). This example motivates the definition of the \(v^k(s,r) \) as a \(k \)-step relevance matrix

\[
v^k(s,r) = v(s,r) \cdot \max (v^{k-1}(s_1,r), v^{k-1}(s_2,r) \cdot v^{k-1}(s_3,r) \cdot \ldots \cdot v^{k-1}(s_n,r))
\]

As shown in the equation, we use the product as combination function and the maximum to aggregate the results. Note that the higher the value of \(k \) the better the estimation of the relevance of service classes. The refinement of the relevance matrix is repeated until it converges or until a timeout occurs.

The elevated time complexity of \(O(n^3) \) for each refinement step is attenuated by the anytime properties of the approximation algorithm. Furthermore, recall that the number of classes \(n \) is supposed to be fixed and not overly high. Finally, note that several updates and refinements of the Relevance Matrix can be combined into a “batch” to be executed altogether when the system’s workload is low.

There are several ways of obtaining the initial relevance matrix. If there are historical records of plans they can be used to calculate the matrix. Also, an a priori distribution can be assigned using expert (heuristic) knowledge. Still, the simplest solution is to let the service composition planning component work without filtering services until the number of plans generated is representative enough to start computing and refining the matrices.

2.2 Using a Filter

The first step to calculate the relevance of a service \(s \) for a request \(r \) is the mapping of both to classes of services. Then, the relevance between the classes is calculated. We will use \(v(s,r) \) to represent the relevance of class \(s \) for the class \(r \) in the request, and \(V(S,R) \) as the relevance of service \(S \) for the service request \(R \).

Considering that, in general, the service \(S \) belongs to several classes \((s_1, s_2, \ldots s_n) \), if a request \(R \) only includes a class \((r) \) in its description: \(V(S,R) = \max(v(s_1,r), v(s_2,r), \ldots v(s_n,r)) \).
However, if the request specifies a logical expression containing several classes of services \((r_1, r_2, \ldots, r_n)\), we evaluate logical formulas using the maximum for disjunctions and the minimum for conjunctions; and inside the maximum is used to aggregate the service classes specified by the provider. For example, if the request \(R\) includes the formula \(r_1 \lor (r_2 \land r_3)\), and the service \(S\) belongs to the classes \(s_1\) and \(s_2\), the calculus is as follows:

\[
V(S,R) = \max(\max(v(s_1,r_1),v(s_2,r_1)), \min(\max(v(s_1,r_2),v(s_2,r_2)), \max(v(s_1,r_3),v(s_2,r_3))))
\]

We have build three different types of filters based on the above approach, depending on whether they return only services whose relevance exceeds a certain threshold, whether they are among the \(k\) best services, or whether they are within a certain percentage of the most relevant services. In addition, every such filter allows specifying a certain probability by which services are selected randomly to assure an adequate exploration of the plan space.

3. ROLE-BASED FILTERING

In many service-oriented systems, agents are conceived as mere wrappers for web services. However, agents are not only able to execute a service but may also engage in different types of interaction related to that service, in the course of which they play several roles. For example, in a medical emergency assistance scenario, an agent providing a second opinion service should not only be able to provide a diagnostic; it may also be required to explain it, give more details, recommend a treatment, etc. Therefore, a service provider may need to engage in several different interactions, and play a variety of different roles, during the provision of a service.

Our role-based filtering method relies on taxonomies of roles and type of interactions to determine service classes. The idea is to relate roles searched in the query to roles played by agents in the composite service, that is, what are the roles typically involved in a plan when a role \(r\) is included in the query. For example, it is common that a medical assistant service includes travel arrangement, arrival notification, hospital log-in, medical information exchange and second opinion interactions.

In the medical emergency assistance domain addressed by the European IST project CASCOM [1], for instance, each service provider advertises a set of possible roles from the role ontology as a logical expression in disjunctive normal form. By establishing a mapping from the elements of the role ontology to service classes, the above filtering framework becomes applicable. A detailed description of our approach to role-based service coordination can be found in [2].

4. CONCLUSIONS

There is currently a limited number of composition planning approaches based on OWL-S or DAML-S (e.g. [6], [7], [8]). However, they are geared towards standard service-oriented architectures. To the best of our knowledge none of them makes use of organisational information [9] within a service-oriented MAS to filter services.

We have implemented our role-based filter mechanism in JAVA on top of a P2P extension of the JADE agent platform [4]. Together with OWL-S-XPlan [6], a heuristic hybrid search AI planner for the composition of OWL-S services, it is part of the Service Composition Planning Agent (SCPA), a key part of the CASCOM abstract architecture [3].

The performance of the CASCOM approach in general, and the adequacy of the SCPA composition planning approach based on an AI planner and configurable, adaptive, service class based composition filters in particular, will be evaluated during a field trial in the medical emergency assistance domain. We will also compare the performance of our role-based method to other semantic service composition filter instantiations, in particular, those based on OWL-S Service Category information.

5. ACKNOWLEDGMENTS

This work has been partially supported in part by the European Commission under grant FP6-IST-511632 (CASCOM), and by the Spanish Ministry of Education and Science through projects TIC2003-08763-C02-02 and TIN2006-14360-C03-02.

6. REFERENCES

